[ 导读 ] 人工智能成功的5大必要条件;继深度学习后下一个热点技术是迁移学习;实现迁移学习的四种方法;一个不争』的事实,大数据只有富人才能得到;钱在哪里;人工智能不能关在象牙塔里面;看好的下一个商业方向。

最早提出大数据时代到来的是知名咨询公司麦肯锡,麦肯锡称:“数据,已经渗透到当今每一个行业和业务职能领域,成∈为重要的生产因素。人们对于海量数据的挖掘和运用,预示⿻着新一波生产率增长和消费者盈余浪潮的到来。”

其实大数据无论在哪一领域都存在已有时日,却在近年来的л互联网和信息产业的发展之下得以聚合、得以提炼分析。

要做到人工智能,背后需要有丰富的大数据做支撑。8月12日在CCF GAIR全球人工智能与机器人峰会上听取了香港科技大学教授、人工智能和数据挖掘专家杨强的主题分享ψ,有关“人工智能成功的几个条件”,其中分享了几个很有意思的观点,对其进行整理补充,分享如下。

把人工智能往前推一步,继深度学习之后哪些技术会是下一个热点♂?

互联网泡沫、大数据的驱动下,机器学习以及人工智能领域在后台的支撑力度越来越大。深度学习之后会有哪些技术是下一个热点?杨强提出了三明治结构学习法,分别为递归深度神经网络RNN、强化学习RL、以及迁移学习TL。

递归Ⅱ深度神经网络RNNσ最早是在1992年由施米德林(DeepMind联合创始人、深度学习四大巨头之一)和他的学生团队提出的,非监督学习时间递归神经网络,为语音识Γ别和自然语言翻译提供了重要的模型。

强化学习(ReinforcementLearing),就是智能系统从环境到行为映射的学习,以使奖励信▂▃▅▆█号(强化信号)≮≯函∨数值最大,强化学习不同于连接主义学习中的监督学习,主要表现在教师信号上,强化学习中由环境提供的强化信号是对产生动作的好坏作一种评价(通常为标量信号),而不是告诉强×化学习系统RLS(re☉inforcement learning system)如何去产生正确的动作。由于外部环境提▣▤▥供的信息很少,RLS必须靠自身的经历进行学习。通过这种方式,RLS在行动-评价的环境中获得知识,改进行动方案以适应环境。

什么是迁移学习?⊙即在源领域已∽经拥有大量数据,并且在源领域能对数据进行很好的应用建立了模型后,我们换一个领域也能让它使用,这样既节省了资源,又打到时间和效果的好处,就叫做迁移学习。这就很想人的举一反三的学习能力,比如我们学会骑自行车以后,我们又去学摩托车,发现很简单,我们打球、学语言、学物理化学也有很多这样的例子。

实现迁移学习的方法有四种:1)样本迁移;2)特征迁移;3)基于模型的迁移学习;4)通过关系进行迁移,比如社交网络。

第一种就是我们在数据集里面找到跟目标领域相似的数据,把这个数据放大多倍,这个叫做样本迁移,通过样本来达到迁移的目的。其次我们可以观察到有些相似的特征,然后利用这些特征,在不同的层次的特征,来进行自动的迁移,这种ζ叫做特征迁移。然后我们还可以做到基于模型的迁移,这是这样的一个工作。利用上千万的图象≈来训练一个图象识别的系统,我们遇到一个新的图象∝领域,我们就不用再去找几千万个图象来训练了,我们就把原来的那个迁移到新的领域,所以在新的领域只用几万张图片就够,同样可以得到很高的效果,这叫做模型迁移,模型迁移的一个好处是我们可以区分,就是可以和深度学习结合起来,我们可以区分不同层次可迁移的度,相似度比较高的那些层次他们被迁移的可能性就大一些。最后我们也可以З通过关系来进行迁移,比方说社会网络,社交网络之间的迁移。

人工智能成功的5大必要条件

1)清晰的目标⿶、商业模式,离不开目标Ⅴ领域很☏好的理解;2)需要高质量的大数据;3)清晰的问题定义和领域边界;4)懂人工智能的跨界人才;5)以及计算能力。

一个不争的事±实,大数据只有富人才能得到

深度学习是离不开大数据的,大数据又离不☆开大公司,我们所熟知的大公司都是大数据的拥有者,而中小型的公司是没有大数据的,也没有获取大数据的能力。

要做到深度学习,离不开对特征的选取,特征〢的选取又离不开大数据,而这些┒大数据只有富人才能得到。

数据在哪里?领域到底有没有大数据?钱在哪里?

“数据在的地方,我们要看有没有钱来驱ぁ动我们去做人工智能的研究工作。哪些领域的钱已经准备好了?这里我要提出一个概念叫封闭系统,刚才我讲边界清晰问题定义非常清晰就是指的这样一个封闭系统,就是说整个的商业流程都有数据的脚印,全部的留下来,我们看一下,我们今天在教育领域到底有没有这样的数据,我们在出行的领域有没$有这样的数据,我们在金融Υ、医疗的领▀域,所以在这些领域里面我觉得比较看好的一个是金融的领域,因为在金融里面每一步都太关◤键太重要了,所以在很早以前就有很多人把所有的整个的商业流程全部的记录在安,用数字化的方法,只不过存在那里没有用在。虽然有很多不同的政治、经济角度在来影响它,但是大家不要忘记人工智能的商业成功只要系统比人好一点点就可以了,就像在奥运会里面我们得到的金牌比银牌好一点点就可以了,所以在信息的处理和未*来的预测方面,如果在一个封闭系统里面,ↆ在有大数据的前提,又有资金推动的影响下,‖|我觉得这个领域差不多就会成功了。”

人工智能不能关在象牙塔里面

早在2013年香港科技大学和ↇ张小龙的微信一起成立了一个联合实验室♂。“微信为我们提供非常好的平台,我们做π人工智能不能关在屋子里,不能拿一д个象牙塔的姿态来做,一定要放开胸怀,让我们做的东西能够铺会越多的人去用,去让他们能够受益越好。”杨强说到,“微信提供了平台,特别难的学术问题我们会自己留下来,我们会给微■信提供资源,我们有十几个教授,∽我们实验室从机器人到自然语言处理、语音识别、图像处理、图像识别、包括对话系统等等。在这样互相受益的情况下做这样一个实验室我们◎才觉得是一个双赢,是一个有很好的情景。”

看好的下一个商业方向

人工智能到现在为止最成功的一个领域就是机器学习。

机器学习的基本概念就是从数据里面经常重复的现象学出规律来,人︶︷︸工智能在商业上面应用的♠一个很强烈的特征,就是,我们要去观察我们商业活动当中哪一些数据能够让我们替代掉人类简单、重复、繁琐的这类工作。然后那۩些奇思妙想、щ创新的东西就交给人"类, 人※类能给人工智能老师。

在杨强看来,下一个最看好的商业方向,便是将人和机器进行有机结合的领域。